Center for Vascular & Inflammatory Disease

Dudley K. Strickland, Ph.D.
Center for Vascular and Inflammatory Diseases
University of Maryland School of Medicine, Baltimore, Maryland
To integrate molecular and cell biology with applied and clinical sciences specifically in the areas of:

- biochemistry
- vascular biology
- immunology
- cancer biology
- hematopoiesis
- stem cell biology
- transplantation biology
Faculty

<table>
<thead>
<tr>
<th>Tenure/Tenure track faculty</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Professors</td>
<td>8</td>
</tr>
<tr>
<td>Associate Professors</td>
<td>3</td>
</tr>
<tr>
<td>Assistant Professors</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-tenure track faculty</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Professors</td>
<td>2</td>
</tr>
<tr>
<td>Research Associates</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>
Departments

- Biochemistry
- Pathology
- Physiology
- Microbiology and Immunology
- Surgery
Funding

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY06</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>FY07</td>
<td>$6,000,000</td>
</tr>
<tr>
<td>FY08</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>FY09</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>FY10</td>
<td>$10,000,000</td>
</tr>
<tr>
<td>FY11</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>FY12</td>
<td>$6,000,000</td>
</tr>
</tbody>
</table>
Comments on the value of basic research and relationship to pharmaceutical research
Value of NIH funding on economic growth. NIH funding has ...

- Boosted economic growth and contributes to growth of bioscience clusters
- NIH funding is complementary with private dollars
- For every NIH $1.00 in basic research, $8.38 is invested in private R&D
- For every $1.00 of NIH funding - $2.21 of output from biotech industry (companies respond to new information)

Source: Milken Institute
Real NIH award funding

Source: NIH Milken Institute
R&D spending by PhRMA member companies

US$ billions

* Estimated.

Source: Pharmaceutical Research and Manufacturers of America (PhRMA).

Source: Milken Institute
Top funded states, 2011

<table>
<thead>
<tr>
<th>Rank</th>
<th>State</th>
<th>Real funding (US$ millions)</th>
<th>Real output in Bioscience industry (US$ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>California</td>
<td>3,152</td>
<td>28,328</td>
</tr>
<tr>
<td>2</td>
<td>Massachusetts</td>
<td>2,223</td>
<td>11,550</td>
</tr>
<tr>
<td>3</td>
<td>New York</td>
<td>1,785</td>
<td>12,582</td>
</tr>
<tr>
<td>4</td>
<td>Maryland</td>
<td>1,486</td>
<td>4,149</td>
</tr>
<tr>
<td>5</td>
<td>Pennsylvania</td>
<td>1,266</td>
<td>10,296</td>
</tr>
<tr>
<td>6</td>
<td>Texas</td>
<td>947</td>
<td>6,844</td>
</tr>
<tr>
<td>7</td>
<td>North Carolina</td>
<td>934</td>
<td>10,988</td>
</tr>
</tbody>
</table>

Source: Milken Institute
Role of lipoprotein receptors in protecting the vasculature
CVD – leading cause of death in USA, Europe and some of Asia

Deaths in USA (in thousands)

Source: American Heart Association
Mummies from 4 populations

- Ancient Egyptians
- Ancient Peruvians
- Ancestral Puebloans (Southwest America)
- Unangan hunters (Aleutian Islands – Alaska)

Figure 2: Frequency of atherosclerosis by age group
Deaths due to CVD (USA 1900-2008)

CVD (ICD-10 I00-I99) does not include congenital. Prior to 1933, data are for a death registration area and not the entire US. Source: NCHS
The problem

- 60,000 mile network of vessels in a closed environment

for comparison - 46,876 miles of Interstate highways in USA

- Adult: 4.7 L blood
- Child: 2 L of blood
Strickland DK, Gonias S, Argraves WS 2002 Trends in End & Metab
LDL receptor-related protein 1 (LRP1)

Required for development

Binds more than 30 structurally unrelated ligands

Mediates several intracellular signaling kinases by NPxY

Undergoes constitutive endocytosis

LRP1 is abundantly expressed in SMC and is atheroprotective

Hypothesis: smLRP1 plays a prominent role in vascular development and integrity
Anatomy of arterial vessels

Elastic fibrils

- major component
- elasticity
- resilience
- does not turnover
- produced by SMC

Collagen

- produced by SMC
- provides strength
- turnover
- Increased deposition with age – leads to hypertension
Genetic models to investigate smLRP1

LRP1 flox/flox x sm22Cre^tg

sm22Cre+ = smooth muscle cell LRP1 deficient mouse

‘smLRP1 –/–’
Effective genetic deletion of LRP1 in SMC

LRP1+/+ smLRP1-/-

LRP1 -

Aortic extracts

tubulin -

α-SMA LRP1 merged

Aortic SMC

Effective genetic deletion of LRP1 in SMC
What happens when the *Lrp1* gene is deleted in vascular smooth muscle cells?
Three distinct phenotypes are noted

- Loss of elastic fiber integrity
- Dilatation of aorta

Marfan’s syndrome – defects in EL fiber formation - aortic aneurysm
I - Loss of elastic fiber integrity

LRP1+/+ smLRP1-/

Elastic Van Gieson staining, 40x

marked fragmentation and disarray of elastic fibers
Echocardiography measurements

Aortic root diameter (mm)

Aortic cross sectional area (mm²)

LRP1+/+ smLRP1-/-

LRP1+/+ smLRP1-/-

*
How does LRP1 protect against this Marfans syndrome-like phenotype
Global proteomic analysis of ECM

remove adventitia

differential extraction
Didangelos et al. 2011

Quantitative differential proteomic analysis of WT and KO enriched ECM
Global proteomic analysis of ECM

~ 800 proteins identified

- Unchanged: 61%
- Upregulated: 19%
- Downregulated: 19%
Elastic laminae degradation and aortic dilatation: deregulation of proteases
HtrA1 is upregulated in smLRP1-/- vessels

![Graph showing upregulation of HtrA1 in aortic extracts of LRP1+/+ and smLRP1-/- mice.](image)
High temperature requirement factor A1 (HtrA1)

- Secreted trypsin family of serine protease
- Involved in degradation of ECM molecules – fibronectin, aggrecan, collagen II, tropoelastin
- Impairs elastogenesis by degrading fibulin 5
HtrA1 is an LRP1 ligand

\[K_D = 70 \text{ nM} \]
Increased inflammation in smLRP1-/- vessel wall

- Proteolytic products of ECM are pro-inflammatory
- Macrophages source of MMPs
Increased MMPs in smLRP1-/- vessel wall

LRP1+/+ smLRP1-/-

MMP9 -
proMMP2 -
active MMP2 -
Increased MMPs in smLRP1-/- vessel wall

MMP9 protein

- LRP1+/+ vs. smLRP1-/-

MMP9 mRNA

- LRP1+/+ vs. smLRP1-/-

MMP2 protein

- LRP1+/+ vs. smLRP1-/-

Active MMP2 protein

- LRP1+/+ vs. smLRP1-/-

MMP2 mRNA

- LRP1+/+ vs. smLRP1-/-

* indicates statistical significance.
LRP1 protects the EL by regulates protease levels

- HtrA1
- MMP9
- MMP2
- MT1-MMP
Three distinct phenotypes are noted

- Loss of elastic fiber integrity
- Dilatation of aorta
- Age related thickening of the media due to increased collagen deposition
Increased collagen deposition in smLRP1-/- vessel wall

Masson’s Trichrome Staining, 40x
III – Age-dependent increase in collagen deposition in media

Age (months)
Aortic media thickness (μm)

0 5 10 15
0
20
40
60
80
100
*
* * smLRP1-/-
LRP1+/+

*
CTGF is upregulated in smLRP1-/- vessels

CTGF protein

CTGF mRNA

α-CTGF, 40x
Connective tissue growth factor

- LRP1 ligand
- CCN family of ECM associated, heparin-binding proteins
- Key mediator of fibrosis and matrix deposition
- cell adhesion, migration, proliferation, tissue wound repair,
Proteomic analysis reveals upregulation of ECM proteins.
In the vessel wall LRP1:

- Regulates protease levels - deregulation of proteases in smLRP1-/- lead to EL degradation of HtrA1, MMP2, MMP9,MT1-MMP

- Regulates matrix deposition by regulating levels of CTGF – excess matrix deposition occurs in smLRP1-/- vessels

- Protects against recruitment of macrophages into the vessel wall
Working model

LRP1+/+

CTGF
HtrA1

Lower levels of CTGF, HtrA1

Normal elastogenesis

LRP1+/+

smLRP1−/−

CTGF
HtrA1

Elevated levels of CTGF, HtrA1

Dysregulated elastogenesis

Collagen deposition

Matrix degradation

Elastic lamina disruption

Increased protease activity

Macrophage infiltration